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Abstract 
In Autosegmental-Metrical models of intonational 

phonology, pitch accents, phrase accents and boundary tones 
may combine freely to create a predicted set of phonologically 
distinct phrase-final “nuclear” tunes. In this study we ask if an 
8-way distinction in nuclear tune shape in American English, 
predicted from combinations of 2 (monotonal) pitch accents, 2 
phrase accents and 2 boundary tones, is manifest in speech 
production and in speech perception. F0 trajectories from an 
imitative speech production experiment were analyzed using (i) 
neural net classification, and (ii) human listeners’ perceptual 
discrimination of the model utterances. Pairwise classification 
accuracy of the imitative productions is highest for tune pairs 
that differ in holistic shape (high-rising vs. rise-fall), and 
poorest for tunes with the same shape that differ in (higher vs. 
lower) final f0. Perception results show a similar pattern, with 
poor pairwise discrimination for tunes that differ primarily, but 
by a small degree, in final f0. Together the results suggest a 
hierarchy of distinctiveness among nuclear tunes, with a robust 
distinction based on holistic tune shape, which only partly 
aligns with distinctions in tonal specification, and a 
weak/poorly differentiated distinction between tunes with the 
same holistic shape but small differences in final f0. 
 
Index Terms: intonation production, intonation perception, 
nuclear tunes, neural net classification, deep learning 

1. Introduction 
In tone sequence models of intonation such as the 
Autosegmental-Metrical (AM) model, F0 movements are 
decomposed into high (H) and low (L) tonal targets, which link 
to positions with phrasal prominence or domain edges, and 
which combine to form different phrasal f0 trajectories or 
“tunes”. For example, the widely used AM model for American 
English intonation [1,2] the basis for the ToBI intonation 
annotation system [3], contains an inventory of 5 pitch accents 
used to mark phrasal prominence (monotonal H*, L*, plus 3 
bitonal accents), 2 phrase accents marking the edge of an 
intermediate phrase (H-, L-), and 2 boundary tones marking the 
edge of an intonational phrase (H%, L%).1  The sequence of the 
final pitch accent in the intonational phrase, referred to as the 
nuclear pitch accent, followed by the phrase accent and 
boundary tone constitute the “nuclear tune” of an utterance. 

 
 
1 Some authors [e.g., 4] further distinguish a downstepped high 
tone (!H), which we set aside here. 

Taking all possible combinations of 5 pitch accents, 2 phrase 
accents and 2 boundary tones, the AM model of American 
English  predicts 20 phonologically distinct nuclear tune 
shapes, which may be used by speakers and listeners to signal 
distinct discourse meanings.  

Empirical investigations of the AM model for American 
English have focused on distinctions among pitch accents [e.g., 
5-8] and phrase accents [9], with relatively less work examining 
nuclear tone sequences (but see [10]) and their phonetic 
implementation. With the goal of addressing this gap, [11] 
tested the distinctions among a subset of 8 nuclear tunes in 
American English (those using only the monotonal pitch 
accents) through the analysis of imitated intonation. In that 
study, participants heard a set of short sentences resynthesized 
with one of 8 nuclear tunes (the model tunes), and reproduced 
the heard tune on a new sentence presented orthographically 
(the imitations). Distinctions among f0 trajectories of the 
imitations were analyzed using k-means clustering for time-
series data, which identified five clusters, each having a distinct 
mean f0 trajectory. Of these five clusters, only one mapped 
neatly onto a distinct tune from the set of model tunes (the mid-
plateau H*H-L%); the remaining four clusters comprised 
imitations of two or more model tunes. The five-cluster solution 
reflected a loss of distinction between tunes of three types: 
steep-rising tunes ending on a high f0 {H*H-H%, L*H-H%}, 
rise-fall tunes {H*L-L%, H*L-H%}, and low-rising tunes 
ending on a mid or mid-low f0 {L*L-H%, L*H-L%}. 

The results from [11] suggest that speakers in that study 
were operating with fewer tunes than were hypothesized in the 
model tune set, making distinctions based on overall tune shape 
and final f0 (high/mid/low), rather than individual tone 
components. We raise two questions about these results. The 
first question concerns tune scaling. The high-rising tunes in 
[11] ended in very high f0, resulting in f0 excursions much 
larger than those of the other tunes. The very large f0 excursions 
of the steep-rising tunes in that study, which were based on an 
f0 scale obtained from natural productions, may have drawn 
participants’ attention away from the smaller distinctions in f0 
that distinguished other tunes from one another. If so, we may 
expect more tune distinctions to be preserved when model tunes 
are resynthesized to avoid large scaling differences. Our second 
question concerns the use of k-means clustering to identify 
groups of similar f0 trajectories in the imitated data. The 
optimization method used in selecting the clustering solution 
finds the grouping of data that maximizes the distance between 
clusters, while minimizing distance among items belonging to 



the same cluster. With this algorithm, f0 trajectories with 
different shapes that are nonetheless close in f0 space may be 
grouped in the same cluster, while those with larger differences 
are more likely to be grouped in different clusters. Would the 
smaller f0 differences between “lost” tune distinctions in the 
clustering analysis emerge using a different method for 
evaluating distinctions among imitated tunes? 

The present paper addresses these questions in a follow-up 
study, using the imitative speech production paradigm from 
[11], now modifying the resynthesized f0 trajectories of the 8 
model tunes to reduce scaling differences among them. First, 
distinctions in the f0 trajectories of imitations were assessed 
using classification analysis, with bidirectional Long-Short-
term-Memory (LSTM) neural networks trained to classify f0 
trajectories of the imitations in the 8 categories of the model 
tune set. LSTMs are a type of recurrent neural network widely 
used in ‘deep learning’ and are especially successful at pattern 
recognition in sequence data, including speech and language 
[12, 13]. Further hierarchical clustering over the classification 
output provides a model of the relative distinctiveness among 
the 8 classes of imitated tunes. Second, we compare the 
classification results with results from a perceptual 
discrimination experiment with human listeners to evaluate the 
role of perceptual factors in the imitation of input tunes. Below 
we show that, when model tunes are scaled to a similar f0 range, 
machine classification of the imitations is overall very good 
(65% accuracy). Yet the tune pairs that the classifier most often 
confuses are mostly the same tune pairs that are very poorly 
discriminated by human listeners. Notably, two of the three tune 
pair distinctions that were lost in the clustering analysis of [11] 
are among the most poorly discriminated and least accurately 
classified in the present study. Based on these findings, we 
discuss the parameters in tune shape that are robustly 
distinguished, and those that are not, and consider the 
implications for the phonological representation of intonational 
tunes and their perceptual salience.  

2. Methods  

2.1. Speech production experiment  

Imitative productions of the 8 nuclear tunes formed over 
combinations of a monotonal pitch accent, phrase accent and 
boundary tone (tunes now abbreviated as HHH, HHL, HLH, 
HLL, LHH, LHL, LLH, LLL) were elicited using the 
experimental paradigm from [11]. Speakers heard model 
utterances with resynthesized f0 trajectories representing the 8 
tested tunes. On each trial, speakers imitated the heard tune, 
reproducing it in a new sentence presented on the computer 
screen. Participants were encouraged to reproduce the tunes in 
a way that sounded natural to them. The sentences in the model 
utterances and the new sentences were syntactically similar, 
ending in a trisyllabic, stress-initial name on which the nuclear 
tune was instantiated. Model utterances were produced by 2 
model speakers (one male, one female) with 3 sentences (“Her 
name is Marilyn”/ “He answered Jeremy”/ “He quoted 
Helena”). The new sentences that participants said aloud were 
“She remained with Madelyn”/ “He modeled Harmony”/ “They 
honored Melanie”.  

In each trial, the participant heard 3 model utterances 
instantiating the same nuclear tune. F0 was resynthesized for 
the model utterances using PSOLA in Praat [14], with a linear 
f0 decline over the preamble and implementing straight-line 
approximations of the nuclear tunes, shown schematically in 

Figure 1. The resynthesized f0 contours differed from those 
used in [11] in both f0 scaling (lower peak f0, most notably for 
HHH, LHH) and in the alignment of f0 turning points to 
consistent segmental landmarks. Tunes were implemented 
using five target f0 values located in each model speaker’s pitch 
range. The scaling and alignment of resynthesized tunes were 
based on examples from online training materials [3], and were 
judged to sound appropriate for each tune by two expert ToBI-
trained listeners (including the first author).  

30 self-reported native speakers of American English (18 
female, 11 male, 1 gender non-binary, mean age = 21) were 
recruited from the Northwestern University subject pool (22) 
and from Prolific (8). They participated remotely in the 
experiment, using their own computer, microphone, and 
headphones/earbuds. There were 144 trials (8 tunes x 18 trials 
per tune). The 18 trials for a given tune differed in the order of 
the 3 model sentences (6 orders, balanced for gender of the 
model speaker), and in the target sentence (3 sentences). F0 in 
the participants’ imitative productions was measured using 
STRAIGHT in Voicesauce [15, 16]. Textgrids were force-
aligned [17], individually inspected, and manually corrected 
where needed. F0 was measured in the nuclear accented word, 
and in the preceding (preamble) portion of the sentence. A 
hybrid automated/manual f0 error detection procedure resulted 
in the exclusion of 11% of the utterances, for a total of 3,798 
imitative utterances analyzed (f0 samples were flagged as an 
error when exceeding f0 rate-of-change thresholds from [18] – 
non modal phonation was a frequent source of errors).  

To test whether participants produced distinct f0 patterns 
for all 8 input tunes, we evaluated distinctions among imitations 
based on the accuracy of a bidirectional LSTM neural net 
classifier that assigned f0 trajectories of imitations to one of 8 
classes corresponding to the input tune labels. If tunes are 
accurately imitated, with distinct f0 trajectories reliably 
implemented for different tunes, classification performance 
should be optimal, with all imitations of a given tune assigned 
to the same class. Errors in the classifier output (e.g., imitations 
of HLL are assigned to the HLH class) are expected if 
imitations fail to reliably implement the distinct f0 pattern for a 
given tune. Frequent pairwise errors (e.g., HLL identified as 
HLH, and vice-versa) would reflect a loss of distinction 
between a pair of tunes.  

 Average classification accuracies for each category, along 
with average between-category misclassification rates, were 
calculated over 20 repetitions of a training-testing procedure. In 
each repetition, the data were randomly partitioned into training 

Figure 1: Schema for the models tunes 
 



(45%), validation (10%), and test (45%) subsets.1 Various input 
representations of the f0 trajectory were tested.2 Here we report 
only the combination of parameters which yielded the highest 
average accuracy in classification: time-normalized ERB at two 
time steps (x & dx), in the nuclear word only. 

Agglomerative hierarchical clustering was used to infer 
groupings among the 8 tune classes based on average 
proportions of misclassfied trials, using the distance metric 
δ(𝐴𝐴,𝐵𝐵) = 1 − P(𝐴𝐴,𝐵𝐵) , where P(𝐴𝐴,𝐵𝐵)  is the proportion of 
trials where tune A is classified as B. Tune pairs that are more 
often confused in the classifier output will be separated by 
smaller distances in the hierarchical clustering analysis. The 
overall hierarchical structure shows how the tune classes are 
dispersed in f0 space.  

2.2. Speech perception experiment  

The perceptual salience of the input tunes was tested by human 
listeners in an AX discrimination task, using model utterances 
from the speech production experiment. There were 8 tunes 
(shown in Fig. 1), produced by 2 model speakers, on 3 different 
sentences for 48 unique stimuli.  30 different native speakers of 
American English, recruited on Prolific, participated remotely 
(14 female, 15 male, 1 gender non-binary, mean age = 23). On 
each trial participants were presented with recordings of a tune 
pair and asked to respond, by mouse click, if the two tunes were 
the same or different, with an inter-stimulus-interval of 500 ms.  
Participants were instructed to focus on the intonational melody 
of the utterance. Tunes were paired with each other in all 
possible order-sensitive combinations yielding 64 tune pairs (8 
x 8 tunes). This 64-tune list was repeated, yielding 128 trials in 
total. For both tunes in a given trial, the model speaker voice 
and the model sentence were the same. Model speaker and 
sentence varied across trials and were combined with tune pair 
in 3 counter-balanced lists. 10 participants were randomly 
assigned to each list, hearing different model speakers and 
sentences across randomized trials, with all possible 
combinations attested across the 3 counterbalanced lists. 

We analyzed responses to order-insensitive tune pairs 
(e.g., combining responses to HHH-HHL & HHL-HHH) to 
assess how accurately listeners discriminated tune pairs. 
Bayesian logistic regression in Stan [20] was conducted to 
model variation in listeners’ responses (“same” or “different”), 
as a function of tune pair, with random intercepts for listener, 
and weakly informative normal priors, for both the intercept 
and fixed effects. Results are reported only for “different” trials; 
performance on same-tune trials was near ceiling for all tune 
pairs.  

3. Results 
Neural network classification accuracy of imitative productions 
is high overall, with 65% correct classification of tunes (chance 
= 12.5%). Similarly, perceptual discrimination for most tune 
pairs was well above chance (mean 80% correct; chance = 

 
 
1 The 8 tune categories were balanced within each subset. The 
classification networks consisted of an input layer and two 
bidirectional LSTM layers of 200 units, each followed by a 50% 
dropout layer. These were followed by a fully connected layer, 
a softmax layer, and a classification layer. The Adam training 
algorithm was used [19] with L2 regularization 0.001, learning 
rate 0.0001, and validation patience 20 epochs. 

50%). However, for both the classifier and human listeners, 
certain tune pairs were frequently confused, as shown in the 
confusion matrices over tune pairs in Figure 2a.  Figure 2b 
shows there is a relationship between the perceptual 
discriminability of the model tunes and classification accuracy 
for the imitations. In addition, confusions among imitations are 
less frequent than confusions among the model tunes that they 
were meant to imitate. This suggests that human listeners were 
unable to take full advantage of f0 information marking tune 
distinctions in the model utterances. It is also possible that in 
imitating the model tunes, speakers enhance acoustic 
distinctions between tunes, providing the classifier with extra 
information beyond what was available in the resynthesized 
model utterances.  

Which tunes are confusable? From Figure 2b, four pairs of 
tunes stand out as being the most poorly discriminated, both in 
classification of the imitative production data and perception of 
the model tunes. These pairs are: {HHH, HHL}, {HLH, HLL}, 
{LHL, LLH} and {LHH, LLH}. Taking a closer look first at 
the imitative production data, hierarchical clustering of the 
classifier output (Figure 3a) shows that the tunes in these 
confusable pairs define clusters in the similarity space defined 
by the classifier output. The tunes in the high-rising pair {HHH, 
HLL} are the least separable (smallest distance), followed by 
the rise-fall {HLH, HLL} and low-to-mid rising pair {LHL, 
LLH}. The low-to-high rising tune LLH joins the low-to-mid 

2  Input representations that were tested varied in the use of (1) 
time-normalized vs. raw-time measurements, (2) F0 estimates 
in speaker-centered Hz or ERB units, or autocorrelograms 
(vectors of correlations between a frame of the signal with itself 
at all possible lags); (3) F0 estimates at each sample x, the 
difference between x and the following sample (dx), or both (x 
& dx),  and (4) the whole utterance, just the preamble, or just 
the nuclear word.  

Figure 2: Heat maps showing the percentage of NN 
classification confusions and listener perceptual 
confusions for tune pairs (a), and their correlation (b).  

 



rising pair to form a broader similarity grouping of low-rising 
tunes. The low-falling/flat LLL tune stands alone—imitations 
of LLL are rarely misclassified. These results suggest a 
mapping of imitated tunes onto a similarity space with four 
clusters, described in terms of their holistic shape: high-rising, 
rise-fall, low-rising, and low-fall/flat. Within a cluster, tunes 
with distinct tone labels can be distinguished with lower 
accuracy, and are often misclassified for one another.  

Turning to the perception results for the model tunes, Figure 
3b plots estimates from the Bayesian model of the proportion 
of “same” responses given for a particular tune pair 
(corresponding to confusions in Fig. 2a, right), sorted from 
lowest to highest. In addition, the phonetic distance between the 
tunes in a given pair, calculated as the root-mean squared error 
between f0 trajectories of the model tunes (RMSE), is color-
coded. RMSE is clearly related to perceptual discriminability. 
The model estimates shows that four tune pairs are 
discriminated at or below chance, based on 95% Credible 
Intervals that include or exceed 50% (chance), i.e., more 
“same” than “different” responses. The poorly discriminated 
tune pairs include the same tunes that are grouped together in 
the hierarchical clustering of the imitated production data: 
{HHH, HHL}, {HLH, HLL}, {LHL, LLH} and {LHH, LLH}.  

We now have converging evidence for weak distinctions 
for four tune pairs, both in the perception of the model tunes, 
and in imitative productions of those tunes. Notably, all of these 
confusable tune pairs vary primarily in the f0 value at the end 

of the tune, seen in the model tunes (Fig. 1), and in the by-
speaker average f0 trajectories of those tunes (not shown). Put 
differently, what the tunes in each pair have in common is their 
shape at the beginning of the nuclear word, including the f0 
movement associated with the pitch accent. 

Classifier confusions for some of the imitated tune pairs are 
lower than perceptual confusions of the model tunes for the 
same pairs: {LLH, LLL} and {LHH, LHL} (see Fig. 2b). This 
finding suggests that in imitating these tunes, speakers are 
enhancing relatively small F0 distinctions present in the model 
tunes. Conversely, classifier confusions for other imitated tune 
pairs are higher than perceptual confusions of the model tunes: 
{HHH, HHL} and {HLH, HLL}, which suggests that speakers 
are diminishing F0-based distinctions in imitating these tunes. 

Which tune distinctions are robust? The hierarchical 
clustering of imitated tunes and the perceptual discrimination 
of model tunes alike indicate robust distinctions between most 
tunes. The most robust distinctions are between the tune groups 
that emerge from the hierarchical clustering analysis, i.e., high-
rising tunes that start high and end higher {HHH, HHL}, rise-
fall tunes {HLL, HLH}, low-rising tunes that end in a mid-level 
f0 {LHH, LLH, LHL}, and low-falling/flat tunes that start and 
end low {LLL}. Two of these clusters can be described in terms 
of their tonal specification: high-rising {HHX} and rise-fall 
{HLX}. The grouping of the low-rising cluster {LHL, LLH} 
does not neatly align with tonal specification, nor does the 
larger grouping of low-rising tunes that includes LHH. 

4. Conclusions 
This study tested distinctions in the perception and imitative 
production of 8 hypothesized nuclear tunes of American 
English. Tune pairs whose f0 trajectories are phonetically well 
separated are generally perceived and reproduced as distinct, 
while tune pairs that are closer in f0 space are more likely to be 
confused.  Thus, we found similar results for classifier 
confusions and perceptual confusions for some tune pairs, but 
also divergent results, indicating that imitations sometimes 
enhance and sometimes minimize F0 distinctions in the model 
tunes. Classification accuracy of the imitative productions is 
highest for tune pairs that differ in holistic shape (high-rising 
vs. rise-fall), and poorest for tunes with the same shape that 
differ in (higher vs. lower) final f0. One limitation of this study 
is that we focus solely on f0; certain pitch distinctions may be 
perceived differently if co-varying with other cues such as 
duration and intensity. Broadening the cues under consideration 
in both human perceptual discrimination and machine 
classification will accordingly be a useful further direction. 

Our results partially converge with findings from [11], 
suggesting that the differential scaling of tunes in a larger f0 
space does not fully account for lost tune distinctions in that 
study. Major shape distinctions (e.g., low-rising vs. rise-fall) are 
maintained in both studies, while smaller differences in final f0 
for tunes of the same shape are not. This finding raises questions 
about the categorical status of distinctions in holistic tune shape 
vs. final f0, and in the potential for each to convey distinctions 
in discourse meaning. We leave this for future research.  
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Figure 3: Hierarchical clustering for the speech 
production data (a), and model estimates and 95% 
credible intervals for tune-pair discriminability (b).  
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