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Abstract 
Rising pitch movements associated with pitch accents are 
frequently described in terms of alignment and scaling; for 
example, L+H* versus H* accents vary in these parameters.  
We examine how 12 American English nuclear tunes, created 
by combining three pitch accents {H*, L+H*, L*+H}, and four 
edge tone sequences {H-H%, H-L%, L-H%, L-L%}, are 
distinguished in an imitative speech production paradigm. 
Bottom-up clustering analyses of unlabeled time-series f0 
identify a robust distinction between trajectories that rise 
throughout (rise-only) and those with rising-falling movements 
(rise-fall). Additional clustering distinctions between tunes 
with different pitch accents are observed only in the rise-only 
cluster, and further reflect variation in holistic nuclear tune 
shape. For rise-fall movements, further distinctions in 
clustering are best defined by ending f0, corresponding to a 
boundary tone distinction {H%, L%}. With only 4 distinct 
clusters emerging from the imitated tunes, it appears that some 
tune distinctions are lost. Nevertheless, modeling trajectories 
with ToBI labels using a GAMM, and testing alignment of f0 
turning points, reveals small differences between tunes in f0 
scaling and alignment, distinguishing ToBI labels that were 
grouped together in clustering. We discuss these results in terms 
of the hierarchy of distinctions they imply, and categories of 
tune shapes.  
 
Index Terms: intonation, nuclear tunes, alignment, scaling, 
clustering, imitative speech production.  

1. Introduction 
Phonological categories in AM models are often described in 
terms of alignment and scaling. For example, distinctions 
between pitch accents such as L*+H and L+H* are identified 
based on the alignment of an f0 event, e.g., a rise, with respect 
to a metrically prominent syllable. Scaling is another parameter 
which has been described as differentiating categories, 
particularly in the case of pitch accents, for example the same 
tonal element may be realized with a higher f0 value in one 
context than in another (as in H* versus L+H*).  A common 
and recurring question in the intonation literature is if, and how, 
continuous parameters such as alignment and scaling of f0 map 
to phonological categories [e.g., 1-5].  Put differently, how 
much does variation in alignment and scaling reflect the 
implementation of discrete, categorical representations? 
  More generally, it is an open question whether the full set 
of pitch distinctions predicted by the phonological inventory of 
tones in the AM model of American English [6,7] are readily 
available for speakers to produce [8]. We address this question 

in an experiment testing how speakers produce distinctions 
among a set of tunes which are predicted to vary in alignment 
and scaling, testing three pitch accents (H*, L+H* and L*+H), 
combined with all boundary tone sequences (H-H%, H-L%, L-
H% and L-L%): twelve total nuclear tunes. We examine which 
f0 parameters best distinguish the nuclear tune shapes produced 
in imitative speech, and ask if the observed distinctions map 
straightforwardly onto ToBI labels. The f0 trajectories are 
analyzed using a clustering analysis on unlabeled data. We 
further use GAMM modeling to examine what differences in 
alignment and scaling are detectable when the analysis takes 
pre-defined tune categories into account. 

2. Methods 
We adopted an imitative speech production paradigm modeled 
on [8]. Speakers were asked to reproduce the tunes of heard 
model utterances, for which f0 trajectories have been 
resynthesized based on [9,10]. Within a trial, the participant 
listens to model utterances, and then reproduces the exposure 
tune from the model utterances on a new sentence (the 
imitation), which is shown orthographically on the computer 
monitor. Participants are instructed to do so in a way that sounds 
natural to them. The model utterances and imitative utterances 
were syntactically similar, and all ended in a tri-syllabic, stress-
initial name, on which the nuclear tune was instantiated. Model 
utterances were produced by two model speakers (one male, 
one female) and contained two sentences (“Her name is 
Marilyn”/ “He answered Jeremy”). The new sentences that 
speakers were prompted to say aloud were “She remained with 
Madelyn”/ “He modeled Harmony”/ “They honored Melanie”.  

In a trial, a participant heard two model utterances, 
instantiating the same exposure tune on the final tri-syllabic, 
stress-initial name (e.g., “Marilyn”). In each trial, the model 
utterances comprised one production from each model speaker, 
and both model sentences, for a total of four possible (2 x 2) 
stimulus combinations, which appeared with equal frequency 
throughout the experiment. Each stimulus combination was 
paired with each of 12 tunes (described below) for a total of 48 
unique trials, repeated three times and presented in a fully 
randomized order for a total of 144 trials in the experiment.  The 
experiment was completed remotely, with participants listening 
to stimuli over headphones/earbuds, and recording their 
responses with their own built-in/external microphone. 70 
speakers participated in the experiment, recruited from Prolific 
and the Northwestern Linguistics Subject Pool, with each self-
identifying as a native American English speaker (36 female, 
31 male, 3 gender non-binary; mean age =22).  



2.1. Materials and measurement 

Stimuli were created by resynthesizing naturally produced 
utterances, with f0 trajectories created on the basis of straight-
line approximations as described in [6,11], using 6 f0 target 
heights located at the same proportional location in each 
speaker’s pitch range. Alignment of f0 movements 
corresponded to segmental landmarks, as shown in Figure 1A.  

Utterances were segmented via text grid to identify the 
region predicted to carry the nuclear tune (e.g., “Melanie” in 
“They honored Melanie”), and the portion of the sentence 
preceding the nuclear tune. Text grids were force-aligned using 
the Montreal Forced Aligner [12], and subsequently manually 
checked and hand corrected when necessary. Aligned files were 
submitted for f0 measurement using STRAIGHT, as 
implemented in VoiceSauce [13,14].  Files containing likely f0 
tracking errors were detected by an algorithm that computed 
sample-to-sample changes in f0 implemented as in [15], and 
flagged as likely errors those changes which exceeded f0 rate 
of change thresholds described in [16]. Flagged files were 
subsequently manually inspected, and excluded if an f0-
tracking error was confirmed. In total we excluded 9% of the 
files on this basis (note that non-modal phonation was common 
and led to inaccurate sudden jumps in estimated f0). We 
additionally excluded two speakers (from an original total of 
72), for whom poor audio quality made reliable f0 extraction 
difficult. We time-normalized the f0 measurements, taking 30 
equidistant samples per nuclear word. We further converted f0 
measures from Hz to ERB and scaled and centered each 
speaker’s measures, effectively normalizing for differences in 
pitch height and pitch range. Figure 1B plots the by-speaker 
average time-normalized f0 trajectories for imitative 
productions of each exposure tune.  

2.2. Analyses 

Here we report on three analyses, each providing a different 
assessment of the distinctions present in the imitative data. 
First, we present the results of a clustering analysis, 
implementing k-means clustering for longitudinal data [17] 
(Section 3.1). Unlabeled f0 trajectories are partitioned into 
clusters which are iteratively optimized via cluster centroids. 
We selected the optimal partition of the data using the Calinski-
Harabatz criterion [18], which selects as optimal the solution 
with the highest ratio of between to within cluster dispersion, 
computed over time series vectors. We tested two through ten 
clusters as possible partitions.  Here we are effectively asking 
what number of clusters best characterizes the unlabeled data, a 
“bottom up” approach to discovering distinctions among 
imitated tunes. The analysis was carried out on speaker mean 
trajectories for each tune (12 trajectories per speaker).    

We also assessed differences between trajectories which 
were labeled by exposure tune, a “top down” approach to 
describing contour differences, carried out with individual trial-
level productions (not speaker means). First, we modeled time-
normalized scaled ERB for imitations of each tune using a 
GAMM (Section 3.2), fit using [19,20] and predicting f0 by 
tune, with random effects specified using reference/difference 
factor smooths, comparable to random intercepts for speaker 
and by-speaker random slopes for tune, implemented as in [21]. 
Our second “top down” analysis modeled f0 turning points, no 
longer in normalized time, but instead in terms of (raw) 
temporal distance from the end of the first syllable in the 
nuclear word (this boundary was manually checked in the 
auditing of the text grids). We modeled the timing of f0 turning 

points (Section 3.3) using a mixed-effects regression model 
implemented in the Bayesian framework [22], which predicted 
turning point timing by exposure tune, with random intercepts 
for participant, and by-participant slopes for tune.  

3.  Results 

3.1. Clustering analysis  

The results of the clustering analysis are shown in Figure 2. As 
shown in Figure 2A, the optimal partition of the data was into 
only two clusters, here labeled 1 and 2. Cluster 1 mainly 
includes imitations of tunes with a rise-fall contour, while 
cluster 2 mostly includes imitations of tunes which contain no 
fall. A second-pass clustering analysis was carried out 
separately for the imitations in each of the two first-pass 
clusters, as shown in Figure 2B with subclusters (1a, 1b, 2a, 2b). 
Here we examine how each cluster varies in shape, and how 
exposure tunes, defined based on ToBI labels, map to clusters.  

First, consider clusters 1a and 1b and their mean trajectories 
in Figure 2B. These mean cluster shapes are best distinguished 
by the scaling of f0 after the initial peak f0 associated with the 
pitch accent: In cluster 1b, f0 falls from the initial peak to a low 
value, while in cluster 1a there is a much smaller f0 fall after 
the peak, ending in a mid-level f0. The mapping of exposure  

Figure 1:  Schematic model tunes, with vertical lines 
indicating segmental landmarks (A), and mean time-
normalized speaker productions (B), with thin lines 
indicating speaker means and the thick line indicating 
the grand mean. H*HH refers to H*H-H%, and so on.   

    



tunes to clusters is largely, though not entirely, based on 
boundary tones: imitations of LH-ending tunes tend to fall into 
cluster 1a, while those of LL-ending tunes fall into cluster 1b. 
Imitations of H*LH are evenly distributed across the two 
clusters. The mean trajectories of the two clusters differ slightly 
in alignment of the initial pitch movement (associated with the 
pitch accent), but more so in the scaling of the final portion of 
the tune, with higher (1a) or lower (1b) f0.  

The f0 trajectories in clusters 2a and 2b rise throughout, and 
differ in two parameters: whether the rise is scooped in shape 
(2a) or domed (2b), and the scaling of the ending f0 in each, 
with cluster 2a ending higher. This distinction in shape maps 
onto exposure tune labels, with imitations of L*HHH, L*HHL 
and H*HH mostly making up cluster 2a, and imitations of 
LH*HH and LH*HL mostly making up cluster 2b. This 
distinction in scooped vs. domed rise shape has been 
documented elsewhere, where it is described in terms of the 
Tonal Center of Gravity [4,23,24] of an f0 event. This may be 
the basis of the distinction among the high-rising nuclear tunes 
in our study as well, distinguishing clusters 2a and 2b, though 
this merits further investigation.    

In summary, the four clusters which emerge from our 
analysis define a hierarchy of distinctions, with rising vs. rising-
falling at the highest level. A further distinction in the rising-  

falling subset corresponds primarily to the boundary tone 
sequence (cluster 1a/1b), manifest in final f0 height. For the 
rising subset, a distinction in rise shape (domed vs. scooped) 
corresponds fairly well to a distinction between the two bitonal 
pitch accent categories in the exposure tunes, though 
differences in f0 contour shape are holistic, spanning the tune.  

3.2. GAMM modeling of trajectories  

Given the results of the clustering analysis, we have evidence 
that some distinctions between exposure tunes are not well 
preserved by speakers in the experiment. For example, 
imitations of LH*HH and LH*HL mostly cluster together in 
cluster 2b, suggesting that they are produced without clear 
distinctions in shape. To further assess distinctions among 
tunes, we visualized GAMM smooth fits and confidence 
intervals (CIs), shown in Figure 3. For any pair of tunes, we 
take non-overlapping CIs as evidence of a reliable difference 
between exposure tune shapes. Figure 3A and 3B show 
GAMM fits for each pitch accent, grouped by edge tone 
sequence. We note here that each set of tunes (within a panel) 
shows regions that are differentiated by the GAMM analysis- 
and moreover each contour shows the expected distinction in 
shape based on the exposure tunes (see Fig. 1), save for H*HH, 
which has been reproduced as a scooped low-to-high rise. With 
respect to panel B in particular, we see that, although imitations 
of tunes with different pitch accents were grouped in the same 

Figure 2: Cluster partitions for the full data set (A) and 
each sub-cluster (B). Faint lines are speaker means for 
each tune; dotted lines are cluster means. Heat maps at 
right show cluster composition in terms of the 
proportion of contributing tunes, indexed by color. 

 

Figure 3: GAMM fits for tunes over normalized time, 
with 95%CI. Non-overlapping CI can be taken to 
indicate a significant difference across tunes. 

 



cluster (1a/1b), there are detectable differences in the region of 
the pitch accent in f0 scaling (H*LL vs. LH*LL) and in 
alignment (LH*LL vs. L*HLL). We can make analogous 
comparisons for the imitations of tunes that clustered together 
in clusters 2a and 2b, shown in panel C of Figure 3. These 
clusters grouped imitations of tunes with different edge tones 
(HL and HH);  however GAMM fits show differences between 
these two edge tone sequences corresponding to distinctions in 
rise shape between scooped and domed (particularly for  
LH*HH/LH*HL), and in scaling of final f0 height.  

3.3. Alignment of f0 peaks and valleys 

Some of the differences among nuclear tunes relate to the 
alignment of f0 peaks and valleys. In our set of resynthesized 
exposure tunes, differences in f0 alignment are important for 
distinguishing the 3 pitch accent categories. We find marginal 
evidence for alignment distinctions among imitated productions 
in the clustering analysis, where 2 (but not 3) pitch accents are 
distinguished, only in the rising subset (Fig. 2B, cluster 2a/2b). 
We took a closer look at alignment through the timing of two 
f0 events with respect to the boundary between the first and 
second syllable in the word carrying the nuclear tune. We 
measured alignment of the f0 peak associated with the pitch 
accent rise for imitations of exposure tunes with a rise-fall shape 
(those with an L- phrase accent), in terms of the (often positive) 
distance from the syllable boundary to the f0 peak of the rise. 
For exposure tunes with an overall rising shape (those with H- 
phrase accents), we measured alignment of the valley of the rise 
(i.e., the rise onset) as the (often negative) distance of the f0 
minimum to the syllable boundary (Fig 4). We report estimates 
from the statistical model which were found to have a reliable 
effect on alignment, assessed by inspecting the 95% posterior 
distribution for a given effect. When the posterior excludes 0, 
this indicates a clear directionality for the effect. We also report 
the percentage of the posterior with a given directionality [25] 

as “pd” (for “probability of direction”); pd = 99% indicates that 
99% of the distribution has a given sign: strong evidence for an 
effect. With L+H* as the reference level in the peak alignment 
model, H* is earlier (β = -17; CI = [-27,-9]; pd = 100%) and 
L*+H is later (β = 42; CI = [33,50]; pd = 100%), without strong 
evidence for an effect of edge tone sequence (pd = 83%). In the 
valley alignment model, with L+H* as the reference level, 
L*+H shows later alignment (β = 20; CI = [10,31]; pd = 100%), 
with a further credible effect of boundary tone where HL 
boundary tones lead to earlier valley alignment (β = -11; CI = 
[-20,-3]; pd = 100%). There is also an interaction (pd = 100%), 
indicating the boundary tone effect is larger for H* pitch accents 
- this seems related to the fact that H*HH is imitated with a 
different shape in the initial portion compared to H*HL (see 
Fig. 1/Fig. 3); H*HH shows the latest mean alignment while 
H*HL shows the earliest. Especially for L+H* and L*+H, the 
joint influence of edge tones and pitch accent on alignment of 
the valley (rise onset) is a departure from what we see in peak 
alignment, suggesting that rise onset timing is more holistically 
determined by these two parameters. In both peak and valley 
alignment, but especially valley alignment, distributions are 
heavily overlapping, and effects are small in magnitude. 
Nevertheless, these results suggest fine-grained distinctions 
that were not captured in the clustering analysis.  

4. Discussion 
Our results suggest a hierarchy of distinctions among nuclear 
tunes, as reflected in imitated productions. Clustering of 
unlabeled f0 trajectories of imitations shows a primary partition 
into rise and rise-fall shapes, with a secondary partition defined 
by scaling of final f0. For imitations in the rise class only, this 
secondary partition also marks a distinction between scooped 
vs. domed rises, corresponding to a Tonal Center of Gravity 
distinction. Within these four clusters, finer distinctions in f0 
alignment and scaling emerge when imitated productions are 
grouped by exposure tune category, some of which correspond 
to predicted distinctions between tonal categories (e.g., pitch 
accent distinctions, Fig. 3B), while others are best described in 
terms of holistic tune shape (domed vs. scooped rises) that 
integrate pitch accent and edge tone features. That finer 
distinctions are not captured in the clustering analysis reflects 
their smaller scale and variable implementation. We note here 
that with the present data we are not able to localize the source 
of noisy imitations to perception (of model tunes) or to 
speakers’ production systems reducing or eliminating perceived 
distinctions. In sum, the present results show the importance of 
considering distinctions among tunes as part of a whole system.  
To evaluate the AM model of American English nuclear tunes 
it is necessary to consider how tunes in the inventory are 
implemented in relation to one another, and the extent to which 
they are reliably distinguished from all other members of the 
inventory. This approach gives further insight into the ways in 
which speakers actually make tunes distinct, some of which are 
predicted by the AM model, and some of which are not (e.g., 
domed vs. scooped rises). Further tests of tune categories in this 
vein will benefit from examining other acoustic correlates of 
intonation (duration, intensity, voice quality), as well as 
perceptual data, and also from putting tunes in discourse 
contexts, which may support or enhance certain distinctions.  
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Figure 4. Alignment of f0 peaks (A) and valleys (B), 
with tune at left. Violin plots show the distribution, the 
large points show the mean. Tunes are ordered top to 
bottom from latest to earliest alignment. Color indicates 
pitch accent. Time 0 marks the end of the first syllable.   
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