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ABSTRACT 
 
What is the minimal mathematical model that can 
generate the F0 trajectories for a system of pitch 
accents? In this work, we propose a nonlinear coupled 
dynamical systems theory of American English pitch 
accents with a single basic parameter. As that 
parameter increases, F0 profiles for different pitch 
accents are generated. The terms in the differential 
equation are based on a novel dynamical analysis of 
a large database of F0 productions in terms of 
measurements of F0 peak, peak velocity, and the time 
to achieve peak velocity. We describe the basic 
dynamical properties of pitch accents in our database 
and argue for the proposed model as the simplest one 
that realizes all the major dynamic F0 properties of 
the pitch accent system. We argue that the proposed 
model describes both abstract phonological and 
concrete phonetic aspects of the system. 
 
Keywords: Intonation; Pitch Accents; Dynamical 
Systems; Fitzhugh-Nagumo Differential Equation. 

1. INTRODUCTION 

What are the basic scales or dimensions on which the 
pitch accents of a language could be contrasted? 
Current level-based theories of prominence contrast 
pitch accents in terms of the symbols: L, H, and *, 
indicating static, relative F0 target values (low, high), 
and their temporal alignment with a phonological 
landmark [1,2]. An algorithm translates from the 
symbolic expressions to F0 trajectories. Yet there is a 
long research line arguing for the inherent temporal 
gradience and fundamental variability in the 
expressions of F0-based prominence [3,4,5,6], 
emphasizing that it is the F0 configuration, not just 
target values, that are used for pitch-based 
prominence [3,7]. And polynomial coefficients have 
been used successfully to describe those 
configurations [8,9,10].  

Another approach is the use of dynamical systems 
theory to predict F0 trajectories by solving a 
differential equation that expresses the relation 
between F0 and its derivative(s) at every moment in 
time [11]. Differential equations are valuable since 
they bridge the abstract and concrete. The relation 
between the value of a function and its derivatives is 
abstract as it holds invariantly (or within stochastic 

limits) even as the value of the function and its 
derivative change, but it can also explain concrete 
details of the shape of the function. Thus, differential 
equation descriptions can be seen as a bridge between 
abstract level-based descriptions, and more concrete 
configuration-based descriptions. Moreover, the 
differential equation has parameters that can be used 
as a scale for contrast. The greatest hope for a 
dynamical account of pitch accents is that they 
potentially allow for observed properties of the 
phenomenon to emerge, rather than be stipulated 
symbolically or verbally. This is why we believe that 
a proposal for an underlying differential equation for 
a pitch system is worthwhile. For general discussions 
of differential equation-based approaches to 
phonology and phonetics, the reader can consult 
[12,13]. In the original dynamical work on F0 shape 
[11], a linear differential equation was used. In the 
present work, we propose a new nonlinear dynamical 
system of differential equations with a single 
parameter and show that the variation in shape of 
pitch contours in Mainstream American English 
(MAE) requires this additional complexity. Nonlinear 
differential equations have also recently been used 
[14,15] to describe the processes of tonal selection, as 
an application of intentional dynamics to accent and 
meaning [16]. 

Our goal is to show, through novel quantitative 
analysis of F0 dynamics in a large database of MAE 
intonation, that the minimal model required to 
account for the dynamical properties is a cubic 
nonlinear system representing the interaction of F0-
raising and F0-lowering forces. The specific system 
we propose is an instance of the Fitzhugh-Nagumo 
equation, one of the most fundamental equations in 
mathematical neuroscience [17].  However, we 
modify these equations in a novel way, to represent 
discrete, as opposed to rhythmic movement [18]. We 
will show that this system for describing pitch accents 
combines phonetics and phonology in a highly 
organic way, contributing to the solution of the 
problem of how phonetics and phonology combine in 
the description of intonation [19]. 

2. DATA AND METHODS 

The pitch accent model we propose is based on data 
from 130 MAE speakers, aggregated from several 
imitative speech production experiments [29,30]. In 



each experiment, on a given trial, participants heard 
two model utterances that exemplified a particular 
tune. F0 in the model utterances was resynthesized 
based on straight-line approximations from [1]. The 
participant produced the heard tune on a metrically 
and syntactically similar sentence (e.g., heard: “He 
answered Jeremy”, “Her name is Marilyn”; 
produced: “They honored Melanie”). Here we focus 
on F0 of the final trisyllabic stress-initial word, which 
bears the nuclear (phrase-final) pitch accent. Data 
from 70 speakers producing MAE H*, L+H* and 
L*+H in all intonational boundary contexts (H-H%, 
H-L%, L-H%, L-L%) is used, with 48 repetitions per 
speaker, per accent. Data for L* is taken from two 
different experiments in which 60 speakers each 
produced 72 repetitions of L* (and other accents) 
across all four boundary contexts. F0 was extracted 
from the nuclear word and time-normalized to 30 
samples.  

A differential equation describes the functional 
relation at every moment of time between the 
function’s value, e.g., and the value of its derivatives 
(e.g., velocity !"

!#
 and maybe acceleration !

!"
!#!

). To 
determine a differential equation, dynamical 
properties of the data are examined, and the simplest 
differential equation accounting for those properties 
is proposed. The equation can then be solved and 
predicted solutions can be assessed for their fit to the 
data. In the study of speech dynamics, the peak 
velocity (PV) and the time at which peak velocity is 
reached (TTPV) are of paramount importance in the 
attempt to induce a differential equation [20,12,21], 
and they will be two of the measurements we present 
as clues, along with the error-corrected extremum 
(max/min) F0 during the pitch accents. Though TTPV 
is not frequently used as a measure in intonation 
modeling, it serves to quantify the amount of delay in 
pitch with respect to some supralaryngeal event like a 
stressed vowel. Indeed, the notion of delay is one of 
the earliest innovations of the Autosegmental-
Metrical approach to tone, in Goldsmith’s 
introduction of the star diacritic * to signify alignment 
of tonal to non-tonal tiers [23].  

3. EMPIRICAL RESULTS 

The top panel of Figure 1 shows mean curves of each 
pitch accent over the entire data, a qualitative view of 
the F0 trajectories (a) and F0 velocity (b) for the 
initial 2/3 of the entire nuclear tune interval (to 
exclude most of the final region that implements the 
boundary-marking tones). Theses panels show the 
extrema of the pitch accents and where they are 
reached. F0 trajectories are normalized to start at the 
same value. The trajectories show that these data are 
highly representative of observations made 

throughout the last few decades about the pitch 
accents of MAE: the rises rise to different extents and 
show different alignments with the stressed syllable. 
Note that H* reaches a lower F0 peak than the bitonal 
accents. Since this paper is about the dynamics of F0, 
it is also important to view the F0 velocity curves (b), 
which shows the expected earlier rise of L+H* vs. 
L*+H [2], for instance, by a later achievement of peak 
velocity for the latter.   
 

 
Figure 1: a) Mean F0 trajectories. b) Mean F0 velocity. c)  

Peak F0, d) Peak velocity, e) Time to peak velocity by 
pitch accent type. 

 
We do not aim in this paper to provide a statistical 
determination of the phonetic properties of the AM 
pitch accent labels. Our goal, rather, is to glean from 
these dynamical measurements clues as to the relation 
between F0 and its derivatives. We use the effect size 
metric Cohen’s d, which is a measure of the 
difference in means between two distributions, 
normalized by pooled standard-deviation [22], to 
assess the difference between accents in their 
dynamical F0 measures. To judge magnitude of 
effect, Cohen [22] argued that a .5 difference is a 
medium effect, and a .8 difference is large. Within the 
rises, for Peak F0, there is a medium effect for H* vs. 
L+H* (d = -0.58), a large effect for H* vs. L*+H (d = 
-.77), but there is no effect for L+H* vs. L*+H. For 
PV, there is a medium effect for H* vs. L+H* (d = -
0.50), a large effect for H* vs. L*+H (d = -.81), but 
there is no effect for L+H* vs. L*+H. For TTPV, 
there is no effect for H* vs. L+H*, a medium effect 
for H* vs. L*+H (d = -.55), and a medium effect for 
L+H* vs. L*+H (d = -.53).  L* is distinct from the 
rises with a large effect for Peak F0 and PV. 
Considering all three rising accents, we observe 
significant overlap in the distributions for each F0 
measure, resulting in mostly medium effect sizes, 
signalling a gradient scale of dynamic variation. But 
despite this variation, the Cohen’s d above shows a 
pattern among the MAE rising pitch accents:  the 



higher F0 goes, the faster it rises, and the later it 
rises.  This will be our first clue to the underlying 
dynamic. Of course, it’s possible to have a model in 
which Peak F0, PV, and TTPV are independently 
controlled, but the variation we see in Figure 1 points 
to joint control of these dynamical measures. Since a 
dynamical model captures the relation between F0 
and its derivatives, it should be able to capture at least 
some aspects of this covariation, with as few 
parameters as possible.  

Another observation from Figure 1 is that, as has 
been remarked in the literature, L*+H is often 
“scooped”, falling before it rises. This is crucial to a 
dynamical model, because for the same value of F0 
the system can output a negative velocity (for the 
falling part of the scooped rise) or a positive velocity 
(for the rising part). This means that for the dynamic 
model of pitch accents, velocity is not a single-valued 
function of F0, and instead requires two variables, 
each with its own differential equation, not just one 
[17]. Another alternative is to use acceleration as part 
of the model, however, we have found that the 
resulting model does not capture MAE pitch accent 
shapes without having several controllable 
parameters. As will be seen for the proposed pitch 
accent model, these two variables can be interpreted 
as the level of excitation of the forces for raising and 
lowering pitch, respectively. 

To summarize, the dynamical clues are: 1) rise 
later-rise more; 2) the dynamical system needs to 
have at least two interacting differential equations.  

4.      DIFFERENTIAL EQUATION MODEL 

We first motivate the proposed differential equation 
to account for the dynamical properties apparent from 
Figure 1, and then offer a brief interpretation for how 
it operates in the phonetic and phonological systems. 
Instead of presenting the entire differential equation 
directly, we will build it bit by bit from the simplest 
interesting differential equation, so that the properties 
gained from each term are clear. The hierarchy of 
differential equations have polynomial functions on 
the right-hand side: starting from the simplest linear 
polynomial and ending with a cubic polynomial. 
While it’s possible to consider more complex, non-
polynomial functions, our focus on polynomials is 
justified by Taylor’s Theorem showing that any 
function can be approximated with a polynomial of 
arbitrary degree. Also, we consider only 1-parameter 
differential equations and models with velocity, but 
no acceleration, as we seek a minimally complex 
model with the fewest number of controllable 
parameters. 

 

 
Figure 2: A hierarchy of 1-paramater differential 

equations. k is swept from a low number (red) to a high 
number (blue). 

 
Figure 2 shows the solutions of several differential 

equations with a single parameter k, with trajectories 
generated with different values of k within the 
specified range. In (2a) the slope function  !$"

!#
	(where 

x represents F0) is linear and positively related to the 
value F0, which yields exponential growth with the 
rate of growth set by the parameter k. The F0 
trajectories generated by different k values with this 
model are like those of rising pitch accents, but unlike 
empirical F0 trajectories, these trajectories rise 
without bound, so the model fails. In (2b) k is 
negative and a constant is added, which yields 
bounded growth and generates earlier and later rise 
patterns, as seen for the different rising accents in the 
empirical data. But in this model velocity peaks at 
time 0, where curves are steepest, contrary to the 
empirical data (Figure 1), so the model fails. For a 
quadratic polynomial as in (2c), as x approaches 1, x 
and x2 balance (become equal in value), which means 
their difference becomes 0, at which point the 
trajectory flattens at an equilibrium value. Here it’s 
possible to reach equilibrium with peak velocities at 
time points later than 0, as in the empirical F0 rises. 
However, note that the trajectories generated from 
this model exhibit the pattern “rise-later, rise-less” 
(trajectories where the rise starts later, rise to a lower 
F0 peak value), the opposite to the empirical pattern 
for rises, so this model also fails. The trajectories 
above 0 are for an initial small positive x. If x starts 
as a small negative, however, which we show below 
0, there is an exponential fall. For a cubic polynomial 
(d), there is balance of the linear and cubic terms at 
two equilibria 1 and -1, so there can be stable 
(bounded) rises and falls as observed in the empirical 
trajectories. In this model we see the germ of the tonal 
constructs Low (L) and High (H), emergent here as 
stable F0 goals at -1 and 1. As already noted, to get to 
the Low equilibrium requires a negative initial 



condition. Also, this model, like that in (2c), 
generates the pattern of “rise-later rise-less”, opposite 
to the empirical pattern, so again, the model fails.  

 

 
 

Figure 3: Cubic Models with broken L/H symmetry (a) 
and, in addition, (b) to an Activator/Inhibitor dynamic. 

 
Figure (3a) shows the result of breaking the 

symmetry between the high equilibrium at 1 and the 
low equilibrium at -1 of Figure (2d) by adding a small 
constant .501. All the curves in (3a) rise from the 
same baseline -0.5 and the constant 0.501 is chosen 
to be just large enough to release the system from the 
initial inhibited value. As k varies, both the L and H 
equilibria are stable. Lower k (red) is H*-like, rising 
early to a low extent, and as k rises (orange), we get 
to intermediate L+H*-like, then L*+H trajectories, 
before L* for the highest k. Therefore, a key dynamic 
property of the data in Figure 1 emerges from adding 
that constant .501. However, the differential equation 
in (3a). has a major problem: rises can only rise, there 
is no ability to fall then rise, as we see in many 
scooped L*+H. 

Our proposed model is in Figure (3b). As 
discussed below, we interpret A as F0. This model, 
with the help of the interacting variable I, is also able 
to generate L*+H scooped rises. There are two 
variables, an Activator A, and an Inhibitor I. The A 
equation is the same as in (3a), except that now A’s 
change also depends on the value of the second 
variable, I. The negative sign on I signifies that I 
inhibits A. I depends on A, but positively due to the 
positive coefficient of the A term in the function for  
!%
!#
	. As the value of A increases (an F0 rise), it 

increases I, which in turn inhibits A. This Activator-
Inhibitor dynamic is fundamental to mathematical 
biology in general [24] and theoretical neuroscience 
in particular [25, 26]. The specific instantiation we 
developed in (3b) is a version of the Fitzhugh-
Nagumo equation [17] that we modified via the 
equation for I so it will not generate 
oscillatory/rhythmic trajectories, but instead generate 

trajectories that achieve one of two discrete 
equilibria, corresponding to the H/L tone targets of 
the MAE pitch accent system. Note how variation in 
a single parameter k, as it is gradiently swept, 
generates rises with properties as we observe, as well 
as falls. Even small effects like the earlier fall for L* 
vs. the rises is captured. We can therefore say that 
from the variation of one parameter emerges a set of 
correlated dynamical properties. Note however, that 
the intonation system of MAE does not need to use 
every value of k. Categories of pitch accents can 
emerge from the selection of certain k values (or 
regions in k space) as the conventional signalling 
values of the language. Other dialects of English, or 
different languages, could divide the k-scale 
differently. 

We can also interpret A to represent the level of 
motor factors leading to a rise in F0 (e.g., 
Cricothyroid muscle) and I to be the level of 
activation of motor factors leading to a lowering of 
F0 (e.g., Thyroarytenoid muscle). The coupled 
system of differential equations represents the 
internal structure of the motor system interaction 
through activation and inhibition, as we know 
muscular systems to be organized since Sherrington’s 
work [27]. We propose that the motor system is 
phonologically parameterized by k, and that values of 
k are specified at least in part by the prominence 
setting system. Examination of other languages could 
also reveal the need for different constants in the 
equation, or even more or fewer terms in the equation, 
while remaining in the Activator-Inhibitor 
framework. Therefore, the model is a non-dualistic 
model where cognition and the motor system interact 
directly in a language-dependent way.  

5. CONCLUSION 

We have proposed a coupled nonlinear system of 
differential equations representing the motor-system 
governing pitch control, with one phonological 
parameter whose variation leads to phonetic F0 
trajectories representing pitch accents. It’s possible 
that exposure to a dialect of a language leads to a few 
regions of the scale being more prominent than 
others, resulting in dialectal variation of the pitch 
accent system within a language [22]. Finally, though 
the system we have proposed represents the same 
motor system that all humans possess, there can be 
phonologically induced differences in the terms and 
parameters of the interaction, while maintaining the 
A/I interaction, leading to different systems of pitch 
variation in different languages.  
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